Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Biol Chem ; 299(4): 103028, 2023 04.
Article in English | MEDLINE | ID: covidwho-2242974

ABSTRACT

The emergence of SARS-CoV-2, which is responsible for the COVID-19 pandemic, has highlighted the need for rapid characterization of viral mechanisms associated with cellular pathogenesis. Viral UTRs represent conserved genomic elements that contribute to such mechanisms. Structural details of most CoV UTRs are not available, however. Experimental approaches are needed to allow for the facile generation of high-quality viral RNA tertiary structural models, which can facilitate comparative mechanistic efforts. By integrating experimental and computational techniques, we herein report the efficient characterization of conserved RNA structures within the 5'UTR of the HCoV-OC43 genome, a lab-tractable model coronavirus. We provide evidence that the 5'UTR folds into a structure with well-defined stem-loops (SLs) as determined by chemical probing and direct detection of hydrogen bonds by NMR. We combine experimental base-pair restraints with global structural information from SAXS to generate a 3D model that reveals that SL1-4 adopts a topologically constrained structure wherein SLs 3 and 4 coaxially stack. Coaxial stacking is mediated by short linker nucleotides and allows SLs 1 to 2 to sample different cojoint orientations by pivoting about the SL3,4 helical axis. To evaluate the functional relevance of the SL3,4 coaxial helix, we engineered luciferase reporter constructs harboring the HCoV-OC43 5'UTR with mutations designed to abrogate coaxial stacking. Our results reveal that the SL3,4 helix intrinsically represses translation efficiency since the destabilizing mutations correlate with increased luciferase expression relative to wildtype without affecting reporter mRNA levels, thus highlighting how the 5'UTR structure contributes to the viral mechanism.


Subject(s)
5' Untranslated Regions , Coronavirus OC43, Human , RNA, Viral , Coronavirus OC43, Human/genetics , Luciferases/genetics , Scattering, Small Angle , X-Ray Diffraction , RNA, Viral/genetics
2.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology ; 36(Suppl 1), 2022.
Article in English | EuropePMC | ID: covidwho-1980561

ABSTRACT

Positive Strand RNA (PSR) viruses, such as coronaviruses and enteroviruses, cause serious health and economic threats worldwide, as currently seen with the COVID‐19 pandemic. This has drawn attention to the importance of identifying new antivirals and molecular targets in RNA viruses. The multifunctionality of PSR genomes make them desirable targets for therapeutic intervention. Here, we present a class of antivirals that can inhibit SARS‐CoV‐2 replication invitro by targeting conserved viral RNA structures at the 5’‐end. Specifically, stem loops 1, 4, 5a, and 6 of the viral 5’‐region have shown a degree of binding with these small molecules as determined by NMR structural analysis. These results open the door to potentially develop specific small molecules against SARS‐CoV‐2 and related coronaviruses. Additionally, Enterovirus A71 (EV‐A71), which is the etiological agent of the hand, foot, and mouth disease, has caused severe morbidity and high mortality rates in children for decades. Thus, understanding the mechanisms by which EV‐A71 replicates within the cellular environment can bring to light efficient drug targets for viral inhibition. The multifunctional viral protein, 3C protease (3Cpro), is essential for viral protein and RNA synthesis. Here, we investigate how RNA binding allosterically modulates the enzymatic activity of 3Cpro. We identify an overlooked dimerization surface on 3Cpro that is proximal to its active site and distal to its RNA binding domain. Our data show that RNA binding is allosterically coupled to 3Cpro dimerization, and we posit that this is a novel mechanism to regulate its enzymatic function. To that point, single, double, and triple point mutations in the 3Cpro dimerization domain attenuates viral growth and kinetics. Taken together, we present compelling data that demonstrates novel targeting surfaces on 3Cpro that can be pursued as antiviral targets.

3.
mBio ; : e0271721, 2022 Jan 18.
Article in English | MEDLINE | ID: covidwho-1634330

ABSTRACT

Enterovirus infections can cause severe complications, such as poliomyelitis, encephalitis, myocarditis, meningitis, neurological pulmonary edema, and even death. Here, we used genome-wide CRISPR screens to gain new insight into the mechanism by which enteroviruses co-opt host pathways to potentiate replication and propagation. We found that acyl-coenzyme A synthetase long-chain family member 4 (ACSL4) is involved in viral replication organelle formation. ACSL4 is a key component of ferroptosis, an iron-dependent, nonapoptotic programmed cell death. Our results indicated that enteroviruses and coronaviruses can induce ferroptosis via ACSL4. Most importantly, ferroptosis inhibitors, including two FDA-approved drugs, rosiglitazone (ROSI; ACSL4 inhibitor) and pioglitazone (PIO; ACSL4 inhibitor), decreased the viral load of human enteroviruses and coronaviruses, suggesting that ACSL4 is a target for counteracting viral infection. IMPORTANCE We provide the first evidence for the role of ACSL4 in enterovirus replication organelle formation. Moreover, both enteroviruses and coronaviruses induce ferroptosis via ACSL4. These findings establish a novel regulatory mechanism for viral replication. The inhibition of ACSL4 by ferroptosis inhibitors can reduce viral yields of enteroviruses and coronaviruses, including SARS-CoV-2, implying that ACSL4-mediated ferroptosis is a promising therapeutic target for viral diseases.

4.
Sci Adv ; 7(48): eabl6096, 2021 Nov 26.
Article in English | MEDLINE | ID: covidwho-1537883

ABSTRACT

The SARS-CoV-2 pandemic, and the likelihood of future coronavirus pandemics, emphasized the urgent need for development of novel antivirals. Small-molecule chemical probes offer both to reveal aspects of virus replication and to serve as leads for antiviral therapeutic development. Here, we report on the identification of amiloride-based small molecules that potently inhibit OC43 and SARS-CoV-2 replication through targeting of conserved structured elements within the viral 5'-end. Nuclear magnetic resonance­based structural studies revealed specific amiloride interactions with stem loops containing bulge like structures and were predicted to be strongly bound by the lead amilorides in retrospective docking studies. Amilorides represent the first antiviral small molecules that target RNA structures within the 5' untranslated regions and proximal region of the CoV genomes. These molecules will serve as chemical probes to further understand CoV RNA biology and can pave the way for the development of specific CoV RNA­targeted antivirals.

5.
J Occup Environ Hyg ; 18(9): 461-475, 2021 09.
Article in English | MEDLINE | ID: covidwho-1291249

ABSTRACT

Environmental air sampling of the SARS-CoV-2 virus in occupational and community settings is pertinent to reduce and monitor the spread of the COVID pandemic. However, there is a general lack of standardized procedures for airborne virus sampling and limited knowledge of how sampling and storage stress impact the recovery of captured airborne viruses. Since filtration is one of the commonly used methods to capture airborne viruses, this study analyzed the effect of sampling and storage stress on SARS-CoV-2 surrogate virus (human coronavirus OC43, or HCoV-OC43) captured by filters. HCoV-OC43, a simulant of the SARS-CoV-2, was aerosolized and captured by PTFE-laminated filters. The impact of sampling stress was evaluated by comparing the RNA yields recovered when sampled at 3 L/min and 10 L/min and for 10 min and 60 min; in one set of experiments, additional stress was added by passing clean air through filters with the virus for 1, 5, and 15 hr. The impact of storage stress was designed to examine RNA recovery from filters at room temperature (25 °C) and refrigerated conditions (4 °C) for up to 1 week of storage. To our knowledge, this is the first report on using HCoV-OC43 aerosol in air sampling experiments, and the mode diameter of the virus aerosolized from the growth medium was 40-60 nm as determined by SMPS + CPC system (TSI Inc.) and MiniWRAS (Grimm Inc.) measurements. No significant difference was found in virus recovery between the two sampling flow rates and different sampling times (p > 0.05). However, storage at room temperature (25 °C) yielded ∼2x less RNA than immediate processing and storage at refrigerated conditions (4 °C). Therefore, it is recommended to store filter samples with viruses at 4 °C up to 1 week if the immediate analysis is not feasible. Although the laminated PTFE filter used in this work purposefully does not include a non-PTFE backing, the general recommendations for handling and storing filter samples with viral particles are likely to apply to other filter types.


Subject(s)
Air Filters/virology , COVID-19/epidemiology , Coronavirus OC43, Human/isolation & purification , Specimen Handling/methods , Specimen Handling/standards , Environmental Monitoring , Humans , Pandemics , SARS-CoV-2 , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL